_
Ω
•
α
\Box
N
0
Ω
٠
⊐
Ω
≷
≷
≥
_
d.
Ξ
_
_

STUDY MODULE DI	ESCRIPTION FORM		
Name of the module/subject		Code 1010804121010820031	
Field of study Electronics and Telecommunications	Profile of study (general academic, practical) general academic	Year /Semester	
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) obligatory	
Cycle of study:	Form of study (full-time,part-time)		
First-cycle studies	part-time		
No. of hours		No. of credits	
Lecture: 20 Classes: - Laboratory: 25	Project/seminars:	- 6	
Status of the course in the study program (Basic, major, other)	(university-wide, from another field)		
major	university-wide		
Education areas and fields of science and art		ECTS distribution (number and %)	
technical sciences 6 100%		6 100%	
Technical sciences		6 100%	
Responsible for subject / lecturer:			
dr hab. inż. Mariusz Głąbowski, prof. nadzw.			

dr hab. inż. Mariusz Głąbowski, prof. nadzw email: mariusz.glabowski@put.poznan.pl tel. +48 61 665 3904 Wydział Elektroniki i Telekomunikacji ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge of mathematics K1_W01
2	Skills	Is able to retrieve and interpret information from books and Internet K1_U01
3	Social competencies	Student understands a necessity to acquire a new knowledge and skills stemming from a chosen field of studies. K1_K01

Assumptions and objectives of the course:

The aim of the subject is to deliver to a student a basic knowledge of algorithms, data structure, computational complexity, and principles of object programming in C++.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Knows the principles of construction of computer programs; has knowledge from the area of computing science; knows the syntax of C, C++, $-[K1_W09]$
- 2. Has a basic knowledge of algorithms (sorting, greedy algorithms, searching, graph algorithms) and data structures (tables, binary trees, graphs) [[K1_W09]]

Skills:

- 1. Is able to write software for basic computational algorithms, using C/C++ programming languages [K1_U13]
- 2. Uses high level programming languages: C, C++ [K1_U13]
- 3. Is able to write and run programs to solve selected problems in telecommunication [K1_U13]

Social competencies:

- $1. \ ls \ aware \ of \ the \ limit at ions \ of \ his/her \ current \ knowledge \ and \ skills; is \ committed \ to \ further \ self-study. \ -\ [K1_K01]$
- 2. Demonstrates responsibility and professionalism in solving technical problems. Is able to participate in collaborative projects. [K1_K02]

Assessment methods of study outcomes

Faculty of Electronics and Telecommunications

Forming assessment:

Lectures: Written exam; exam is passed when student receives at least 50% points. Exam can be taken after the completion of laboratories.

Laboratories:

- evaluation and assessment of knowledge increment that need to be effective in solving problems covering all tasks within a given subject area;
- continuous assessment during daily classroom practice rewarding knowledge increment in skills in management of using rules and methods learnt in class.

Course description

- computers? architecture
- complexity
- greedy algorithms
- recursion
- structure of C programs
- basic data structures
- operators and expressions
- control statements, recursion vs. iteration
- arrays
- functions
- functions with multiple parameters
- function templates
- sorting and searching algorithms
- pointers and dynamic memory allocation
- structure of C++ program
- classes and objects
- Inheritance
- Polymorphism
- class templates
- object oriented programming

Basic bibliography:

- 1. D.E. Knuth, The art of computer programming, Addison-Wesley Publishing Company, Reading, MA, 1968, 1973.
- 2. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algrithms, The MIT Press; third edition edition (July 31, 2009)
- 3. Paul Deitel, Harvey Deitel, C++ How to Program, Prentice Hall; 9 edition (February 22, 2013)

Additional bibliography:

1. N. Wirth, Algorytmy + struktury danych = programy, WNT, Warszawa, 1980

Result of average student's workload

Activity	Time (working hours)
1. Lectures	45
2. Laboratories	40
3. Preparation for lectures	40
4. Preparation for laboratories	50
5. Exam	4
6. Discussion of exam otucomes	4

Student's workload

Source of workload	hours	ECTS		
Total workload	165	6		
Contact hours	50	4		
Practical activities	105	2		